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A variant of the moment expansion method, used in an earlier paper to describe 
the flo~v of a gas toward an absorbing sphere, is applied to a more realistic 
model of a droplet condensing from a supersaturated vapor. In the simplest 
version a spherical droplet absorbs all incoming vapor molecules, but 
spontaneously emits molecules with a Maxwellian distribution at the droplet 
temperature and with the corresponding saturated vapor density. From a 
solution of the stationary linearized Boltzmann equation with these boundary 
conditions we obtain expressions for the heat and mass currents toward the 
sphere as a function of the supersaturation and the temperature difference 
between the droplet and the vapor at infinity. For small droplet radii the known 
free flow limit is obtained in a natural way. From the calculated expressions for 
the heat and mass current we derive evolution equations for the radius and 
temperature of the droplet. The temperature evolves more rapidly and can thus 
be eliminated adiabatically; the resulting growth curve for the radius shows a 
sharp transition from a kinetically controlled regime for small radii to a regime 
dominated by heat conduction for large radii. The effect of incomplete absorp- 
tion at the sarface is also studied. The actual calculations are carried out for 
Maxwell molecules, with parameters corresponding to argon at 0.65T~ and 
100% supersaturation. 

KEY WORDS: Boltzmann equation; droplet growth; moment expansion; 
kinetic boundary layer; heat and mass transport. 

1. I N T R O D U C T I O N  A N D  S U R V E Y  

This  p a p e r  t r ea t s  a m o d e l  for  the  g r o w t h  of  smal l  d r o p l e t s  f r o m  a supe r -  

s a t u r a t e d  vapor .  T h e  d r o p l e t s  are  a s s u m e d  to  be la rge  c o m p a r e d  to the  

cr i t ical  r ad iu s  for  n u c l e a t i o n ,  b u t  n o t  necessa r i ly  la rge  on  the  scale of  a 
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mean free path in the vapor. Such a regime occurs only well below the 
critical temperature; we shall therefore assume that the density of the liquid 
is much larger than that of the gas, and that the droplet stays spherical and 
is always essentially in local equilibrium. As long as the droplet is much 
smaller than a mean free path, the vapor may be in local equilibrium as 
well, though possibly at a different temperature. The theory of droplet 
growth is then straightforward once the boundary conditions for vapor 
molecules at the droplet surface are known; this regime is known as the 
free flow regime. (1'2~ Once the droplet size becomes comparable with the 
mean free path, a kinetic boundary layer develops around the droplet, and 
the transport in the vapor depends sensitively on the structure of this layer. 
In this so-called transition or Knudsen regime no really satisfactory theory 
of droplet growth exists. (1'2~ For droplets large compared to a mean free 
path the boundary layer becomes less important; in this hydrodynamic 
regime the growth process can be treated using the Navier-Stokes 
equations. 

In a previous paper, (3~ henceforth denoted by I, we developed a 
solution procedure for the linearized Boltzmann equation around a totally 
absorbing sphere that spans the transition regime and connects to known 
results for the hydrodynamic and free flow regimes, at least for a gas of 
Maxwell molecules. Since then the method was shown (4~ to be equally 
successful for two simple models of a vapor mixed with an inert carrier gas. 
In the present paper we shall again treat Maxwell molecules, but replace 
the unrealistic model of a completely absorbing droplet with more realistic 
boundary conditions at the surface. In particular, we take account of the 
spontaneous evaporation of molecules off the droplet. 

In Section 2 we give a short recapitulation of the formalism of I; since 
the formalism is used essentially as in I, we refer to that paper for a more 
detailed explanation and justification of our method. In Section 3 we 
introduce the model of a black droplet, the analog for our problem of a 
black body in the theory of radiation. Such a droplet absorbs all vapor 
molecules impinging on it, but in addition emits molecules with a 
Maxwellian velocity distribution at the droplet temperature and with a 
density equal to the saturation density at that temperature. From the 
solution of the stationary linearized Boltzmann equation with these 
boundary conditions we obtain the particle and heat currents toward the 
droplet as functions of the temperature difference between the droplet and 
the vapor at infinity and of the degree of supersaturation. For small values 
of these driving forces, we obtain a set of Onsager coefficients connecting 
currents and forces of the type found by Lang (5~ in a theory that was 
extended to polyatomic gases, but treated boundary layer effects only 
approximately. 
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If we assume that the kinetic energy and the heat of condensation of 
the arriving particles are distributed instantaneously over the droplet, the 
expressions found in Section 3 lead to evolution equations for the radius 
and temperature of the droplet. These equations are given in Section4 
and solved numerically for parameter values corresponding to argon 
at To=O.65T  c and 100% supersaturation. We find that the droplet 
temperature evolves much faster than the radius; thus this temperature may 
be eliminated adiabatically from the coupled evolution equations, and we 
obtain a universal growth curve for the radius. This curve bends over from 
a roughly linear time dependence of the radius for small radii to a square 
root dependence at large radii. Moreover, the quasistationary value of the 
droplet temperature lies about 8 % above the vapor temperature at infinity, 
and the vapor pressure is approximately uniform for not too small radii; 
this justifies a posteriori the use of the linearized Boltzmann equation. 

The transition from a linear to a square root growth law is typical 
for the transition from a kinetically-controlled to a diffusion-controlled 
regime ~1'2'6~ (the relevant process for large radii is heat diffusion in our 
case). To check this interpretation we consider in Section 5 the case of a 
gray droplet, i.e., of a droplet with sticking and evaporation coefficients less 
than unity. As expected, the growth rate is proportional to the sticking 
coefficient for small radii, but becomes virtually independent of the sticking 
coefficient (as long as it is not extremely small) in the presumed diffusion- 
controlled regime. The final section contains a few concluding remarks, in 
particular on the limitations of the model, on its relevance for the design 
and interpretation of experiments, and on justifications for the approxima- 
tions made. 

The method described in this paper enables one to calculate the 
growth curve for a droplet when the mesoscopic boundary conditions are 
known. In practice, the latter are not known very reliably; therefore, the 
main practical importance of our work is that it provides a way to extract 
information about mesoscopic boundary conditions from experiments on 
droplet growth. (1'2'15) Before our theory can be used in such a way, a 
number of effects must be incorporated, as discussed more fully in 
Section 6; in particular, the theory must be extended to mixtures. On the 
other hand, the theory becomes rather cumbersome for mixtures of 
polyatomic gases; it would therefore be very desirable to have accurate 
experiments on condensation of droplets from gas mixtures in which at 
least the major component (responsible for the heat transport) is a noble 
gas. 
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2. THE  BASIC E Q U A T I O N S  A N D  THEIR  S O L U T I O N  S C H E M E  

As in I, the main technical task is to solve the stationary linearized 
Boltzmann equation for Maxwell molecules in the space outside of a 
sphere, for given boundary conditions at the surface of the sphere. This 
solution should approach a given equilibrium solution far away from the 
sphere. We write the distribution function f(v,  r) for velocity and position 
of the vapor molecules as 

f(v,  r )=nofM(v;  To)[-1 + ~b(v, r)] (2.1) 

with n o and T o the density and temperature for r ~ ~ and fM(V; To) the 
Maxwell distribution at 1 o. For spherically symmetric problems q~ can be 
written as 

q~(v, r) = q~(v,//, r); / /=  r ~ (2.2) 

In units such that lengths are measured in mean free paths and velocities 
in mean thermal velocities [-see (I.2.4) for precise definitions], ~b must obey 
the equation 

0 1--I12 ~ )  
v / / 7  + r - ~-p ~.b(v,//,r)=flqNoq9 (2.3) 

where r/ is the shear viscosity, fl equals (kTo) 1, and No is the linearized 
Boltzmann operator. The partial differential equation (2.3) may be 
transformed into a set of coupled ordinary differential equations by the 
substitution 

~(v, #, r)= ~ Ank(r) tP,k(v, #) (2.4) 
n,k 

where the ~nk (n, k = 0 ,  1, 2,...) are the Burnett functions./3'7) The Burnett 
functions are eigenfunctions of ~0, with eigenvalues of order (fl~/)-l, for 
the special case of Maxwell molecules. 

We now look for special solutions of the form 

A~k(r)=,,(q)( 2 ~ -nk \rcqr/ K~ + 1/2(qr) (2.5) 

where Kv(r) denotes the modified Bessel function, which decays for large r 
as r -me  -r. Substitution of (2.4) and (2.5) into (2.3) leads to a generalized 
eigenvalue problem of the type 

q B" a (q)= A" a (q) (2.6) 
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w h e r e  a (q) is a vector containing the coefficients /-t(q) and B and A are 
~ n k  

infinite matrices representing the action of the operators on the two sides 
of (2.3). In particular, A is diagonal for Maxwell molecules; for further 
details we refer to I. The (degenerate) q = 0  sector of the eigenvalue 
problem (2.6) needs separate treatment. One finds (3'8) two eigenfunctions 
45p and q5 h, corresponding to a uniform increase in density and 
temperature, and two associated eigenfunctions q~pc and qsh~ corresponding 
to particle and heat currents. The latter solutions have A,,k(r) obeying 

Ank(r) (o 0 �9 1 (2k - 1)!! =an; gk(r), go(r) = r ;  gk(r)-  rk+l (2.7) 

Our further developments are based on the half range completeness 
conjecture (see I for further details), which states that solutions with q~ 
vanishing at r ~ oo and given spherically symmetric boundary conditions 
at r = R can be written uniquely in the form 

qb(v,#,r;R)=C(R)~pc+D(R)q~hc+~di(R)qSl+t (2.8) 
i 

where the ~I *) are the special solutions derived from solutions of (2.6) 
with positive eigenvalues qi. In practice, (2.6) cannot be solved in closed 
form; approximate numerical solutions are obtained by truncating the 
expansion (2.4). We shall use the truncation prescriptions, applied 
successfully in I, 

DN: ,~(q)=0 for n + k > N ;  ~NO ~nk "(q~ ---- 0 (2.9) 

This series of truncations contains Grad's 13-moment approximation (9) as 
D 2. Explicit solutions are obtained by truncating qSpc and ~hc accordingly, 
restricting the sum in (2.8) to q~}+) with finite q,-1, and replacing the exact 
boundary condition 

f(v,  ~, R; R) = g(v, I~) for /~ > 0 (2.10a) 

by its Marshak-type analog (1~ 

f0 ~ (,oo dpjo v2dv[ f ( v ,# ,R;R) -g (v ,# ) ]O, ,2k+l (V ,# )=O (2.lOb) 

for all n, k with n + 2k < N. This provides precisely the number of condi- 
tions required to make the truncated version of (2.8) unique, as was shown 
in I. 

822/'63/1-2-14 
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3. T H E  S O L U T I O N  FOR A " B L A C K "  D R O P L E T  

In I we solved the mathematically simple, but physically unrealistic 
case g(v, #)=0, corresponding to complete absorption of all impinging 
vapor molecules without any reemission. In the present paper we include 
spontaneous evaporation off the droplet. If we maintain the requirement of 
complete absorption (perfect sticking) and assume that the distribution of 
spontaneously emitted particles does not depend on the state of the vapor, 
then the requirement that detailed balance holds in the special case of a 
vapor at saturation density ns(To), with To the droplet temperature, leads 
to the requirement 

g(v, #)=n,(TD)fM(v; TD) (3.1) 

with fM the Maxwell distribution at temperature To. 
The boundary problem sketched above was solved for various R in 

various approximations DN. Physically, the most interesting aspects of the 
solution are the resulting particle and (modified) heat current densities 

Jp(r) = j" dv v f(v, r) ~ f dv Ool(v, #) f(v, p, r) (3.2a) 

Jh(r) = f dv v L 2 2] f(v, #, r) r) (3.2b) 

From (2.8) and the specific form of the special solutions contained in it (3) 
one sees that Jp and Jh are proportional to C(R) and D(R) respectively 
[the ~bl +) have no (01) and (11) components]; moreover, one sees from 
(2.7) that they depend on r like r -2 (which also follows from particle and 
energy conservation in the Boltzmann equation). 

For T o and n,(TD) close to To and no, the currents Jp and Jh become 
linear in the differences. In analogy to ref. 5, we use as our variables 

�9 AT AT Tz,-  To Ap n,(TD)--no + 
(3.3) 

To To Po no To 

where we used the (linearized) ideal gas law, and write the resulting Jp 
Jh in the form familiar from irreversible thermodynamics: (51 

R 2 

R 2 

and 

(3.4a) 

(3.4b) 
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with 

30 = ~rno( 2~zmfl )-  1/2 (3.4c) 

The results obtained for the Onsager coefficients c% are given in Fig. 1 
for the D2 (13-moment) and D8 approximations. We shall not go beyond 
the D 8 approximation in this paper, since we saw in I that higher D N 
provide only slight improvements. The exactly known results in the free 
flow limit [R~0 ,  05(v,/z) ~ 0 ] ,  namely O~pp ~ - 1 ,  O~hh = 9/4, O;hp~-----1/2, are 
indicated by arrows. We see that the D2 results are off in this limit by 
factors of order unity; the D8 results are close to their free flow values at 
the R values where they break down due to the numerical inaccuracies 
associated with the singularities in the expressions (2.7) and the 
comparable singularities in the Kk+l/2(qr). Down to this point of 
breakdown, the Onsager relation O~ph(R ) --~ O~hp(R ) is also satisfied up to the 
numerical uncertainty. 

The function O~pp(R) is identical with the normalized reaction rate/~(R) 
for a completely absorbing sphere, shown in Fig. lb of I .  This follows from 
the fact that our present boundary condition (2.10a), with g(v, #) given by 
(3.1)~ is fulfilled for the special case TD = To by 

f (v ,# ,r)=fM(v;To){n~+(no--ns)[ l+r } (3.5) 

, i ' , i , i ' i 

~hh '''", -- ~8 

........ ?::_ 

O(ph= C(hp i.-I" 

...... i ........ F ....... i I , I , I , 
-I 0 I 2 

Iog(RM) 

Fig. 1. The Onsager coefficients defined in (3.4) as functions of log R (in units of the mean 
free path l) in the D2 and D 8 approximations. The arrows denote the known R ,l 0 limits. 
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where ~b a is the solution with g(v)= 0, studied in I. Finally we note that, 
whereas ~pp remains of order unity for R--, o% the other Onsager 
coefficients decrease like R-~ in that limit; this reflects the fact that heat 
transport becomes diffusive for large R (Jh ~RAT/r2); ~(hp and C~p~, must 
then also become of order R -1 to keep the Onsager matrix positive 
definite. 

Our treatment differs from the one in ref. 5 (and earlier ones quoted 
there) in a number of respects. The earlier treatments take into account 
only those moments treated in our D2 approximation, to which they 
reduce for R ~ oe; thus, genuine boundary layer effects are not included, 
and their inclusion would require major modifications. The correct 
behavior for R { 0 is enforced by replacing the expansion (2.4) by separate 
Maxwellians, with different density profiles and temperatures, for particles 
with velocities pointing away from the droplet and all other particles. Thus, 
the approach to the correct R ~, 0 limit no longer serves as a check on the 
theory. Further comments on the relation of our treatment to that of ref. 5 
are given elsewhere.(1 t) 

4. THE G R O W T H  OF A BLACK DROPLET 

From the solution (3.4) of the stationary linearized Boltzmann 
equation one may derive evolution equations for the droplet radius R and 
the droplet temperature TD by assuming that the heat of condensation 
released by the arriving particles and their kinetic energy are distributed 
instantaneously over the droplet, and that the droplet stays spherical in 
shape. The use of stationary solutions must be checked afterward. It can be 
justified only if R and TD change slowly on the time scale of typical 
relaxation times in the gas; in particular, the growth velocity of the droplet 
should be small compared with the thermal velocity. To facilitate the inter- 
pretation of our expressions we return to regular units for the first part of 
the present section. 

The quantities needed from the solution of the Boltzmann equation 
are the total particle current 

4 g R  2 IJp] =-- nok(R, TD) = no,op(R, TD) kkm(R ) (4.1) 

where kkin(R) is the free flow (R J, 0) value for the reaction coefficient k(R), 

kkin(R ) =4rcR2(2rrmfl) 1/2 (4.2) 

and the flow of kinetic energy [cf. (3.2)] 

47zR 2 Jh--}-5jp =_nofl 1Kh(R , T1)) kkin(R) (4.3) 
z# 
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For the change in the droplet volume VD we obtain 

d n o d 
dt VD --nt( TD~) k(R, TD) + C~p V D ~ T D (4.4) 

where nl(TD) denotes the liquid density at T D and % the thermal expan- 
sion coefficient. Similarly we find for the change in the heat content QD of 
the droplet 

d I~Ch(R_,fl TD) 3~cp(R, TD)T D 1 
dtQD=nokkin(R) 2flTo 4-t~p(R, TD) Ah (4.5) 

where Ah denotes the heat of condensation per particle (the definition of 
A~ assumes that a vapor molecule entering the liquid carries the thermal 
energy 3kB TD/2). 

Next we transform (4.4) into an equation for the droplet radius: 

_ % R dTD (4.6) dR n~ (2rcmfl)-l/ztcp(R' T~ 3 dt 
dt nt(TD) 

Similarly we obtain from (4.5) an equation for T D by dividing by the heat 
capacity of the droplet and correcting for the volume change; this leads to 

VD dT D N A dQ dV D (4.7) 
dt - Cp(TD) nl(TD) dt - TD - - ~  

where NA is Avogadro's number and Cp is the heat capacity per mole at 
constant pressure (which is virtually equal to the heat capacity along the 
coexistence curve). 

For our further calculations we introduce dimensionless quantities R, 
T, and [: 

R=ll~, TD= To:F, t=rl---fl-fln'(T~ i (4.8) 
no n,( To ) 

where n,(T) again denotes the density of the saturated vapor at T; the 
combination tc=qfl/no is the mean free time between collisions in the 
vapor. If we further eliminate n o in favor of the supersaturation parameter 

a=no[ns(To)]-'  (4.9) 

and the condensation energy per particle Ah in favor of the corresponding 
energy per mole Ah, we obtain after a few trivial rearrangements 

dR ~ nl(To) ~Cp(k, #)+~pTo - dr" 
di (2~) 1/2 nl(TTo) ~ - -  R d~- 

(4.10a) 
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~,(k, if) dif 3~ nt(To) 1 ~ ~ c h ( t ~ , i f ) + _ _  
di ~ n/(ifTo) 1 +o~pifr o Cp (2~) '/2 

(3__~0 3if ~ p ) }  (4.10b) x 2 

where N denotes the gas constant. 
We solved this set of equations numerically in D2 and D8 approxima- 

tion for parameters I~2) corresponding to argon with T o = 0.65T C and a = 2. 
For n,(T) and n/(T) we used the universal equation of state ~ 

[ ( T )  7(1--2~ 1/3 ] (4.11) 
3 - - ~ - 4 \  TcJ J nl,~(T)=n~ 1 + ~  1 + 

where T~ and n~ are the critical temperature and density, respectively. A 
typical result for R(i) in the D8 approximation, with/~(0)-= 10 and several 
values of if(0), is shown in Fig. 2; the qualitative behavior for smaller/~(0) 
is similar. One sees that the initial growth rates for different if(0).differ 
appreciably, but the curves become parallel after the rapid transient. The 
corresponding curves for if(i) converge on the same time scale to a 
"working temperature" ifw(R), which, to a very good approximation, is the 

12 

11 

' I ' I ' I ' I ' 

"r(o) = 1.oo ...................... 

// 1,07 

i ~ . ~  ~ ' ' ~  t . /  ~-- ~ / ~ -  

1 (} "-- - . - J " - J ' - J f  l \  1:12 ..___...---- ---""--- /I,/ 
'~. ~ . . ~ / . . ~  ~ / ' / - /  

9"  i I J I , I i 
0 10 20 40 0 

, I 

30 

Fig. 2. The  solut ion R(i)  obta ined  f rom (4.10) for /~(0) = 10 and  var ious  values of i?(0) in 
the D s approximat ion .  The  units  are specified in (4.8); the paramete rs  used cor respond to 
a rgon at 0 .65T c and  100% supersa tura t ion .  
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temperature at which the expression in (4.10b) for dT/di vanishes. For 
large /~ the function Tw(/~) has the form 

V 

Tw(/~) ~- 1.078727...-0.012.../~ -1 for D 2 
(4.12) 

i?,w(k)_~l.078779..._0.014... ~ 1 for D 8 

Both values for i~w(oo) in (4.12) lie very close to the isobaric temperature 
T~ defined by 

ps(Ti)=Po, or ns(Ti)Ti=noT o (4.13) 

which for our choice of parameters is given by i? i=  1.078821 .... [The small 
discrepancy, which persists in higher DN approximations, is probably due 
to corrections to (3.4a) of higher order in A T.] At the droplet temperature 
Ti the pressure difference Ap in (3.4) vanishes, and the droplet growth is 
dominated by eph, which, as we saw, is of order t6-~ relative to O~pp. Thus, 
one expects that ~Cp[k, Tw(R)] is of order /~ 1 throughout the region 
where Tw(R)-  7',. is of order _~ 1. 

This expectation is borne out by the numerical solution/~(i) of (4.6), 
with T=Tw(R) and the second term omitted, presented in Fig. 3 
on a doubly logarithmic scale. Especially in the D 8 approximation 
(supplemented by an interpolation to the known R ~, 0 limit for values of /?  

31 

2 
o 

1 
~ I- ~ - .... I] 2 

o 

- 0 

-I 

-2 

_ ,/ 

-3 

-2 0 2 4 6 

log 

Fig. 3. The growth curve R([) obtained from (4.10) after adiabatic elimination of the 
temperature, in D 2 and D 8 approximations, plotted on a doubly logarithmic scale. Parameters 
and units as in Fig. 2. 
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where D8 breaks down) we find a rather sharp transition between a low-/~ 
regime k ( i ) ~  i - i o ,  corresponding to dR/di= (9(1), and a high-/~ regime 
R(Z) ~ (i - i;) 1/2, corresponding to dR/di = (9(k - 1 ). These time dependen- 
ces are characteristic for kinetically and diffusion-controlled processes 
respectively. The relevant diffusion process is heat conduction; the rate of 
condensation is limited by the amount of heat that can be carried away to 
infinity once the droplet temperature has reached a value close to ~(ov) .  
From Fig. 2 one also sees that the influence of the kinetic boundary layer, 
responsible for the difference between D 2 and Ds, is large for small/~, in 
accordance with the trends shown in Fig. 1 for the fully linearized theory. 
For large /~ some differences between D2 and D8 persist; they are barely 
visible in the figure, but are seen in singly logarithmic plots. (8~ 

5. T H E  G R O W T H  OF " G R A Y "  D R O P L E T S  

The physical picture emerging at the end of the preceding section can 
be checked by considering a droplet that reflects some of the vapor 
molecules hitting it (with a corresponding reduction of the spontaneous 
evaporation rate). If the above picture is correct, then for/~+0, where the 
presence of the droplet hardly influences the particle distribution in the 
surrounding vapor, the growth rate should be proportional to the sticking 
coefficient, defined as the fraction of incoming particles that is absorbed. 
For large droplets, the droplet temperature should approach the isobaric 
temperature T,, irrespective of details of the processes at the surface. The 
growth rate is then limited by the amount of heat that can be carried off, 
and hence independent of the sticking coefficient. The same prediction 
follows from probabilistic expectations, guided by the well-known results in 
the theory of Brownian motion. A particle that arrives from the region of 
large r and is reflected by a sphere small compared to l is very unlikely ever 
to return there. A particle reflected by a large sphere "sees" the surface as 
approximately planar and has a high probability, approaching unity for 
R ~  0% of returning to the surface once more, which gives it another 
chance of being absorbed. 

To test these predictions, and to study details of the transition between 
the two extremes, we treat a model in which the sticking coefficient e is 
independent of velocity, and the molecules not absorbed are reflected 
specularly. In the notation of (2.10a) such a "gray" droplet is characterized 
by [cf. also (3.1)] 

g(V,#)=ens(TD)fM(v;To)+(1--cQf(v,--#,R) (5.1) 

[-The sticking and evaporation coefficients should be taken to be equal to 
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(b) 
Fig. 4. The growth rate dR/di for a partially absorbing sphere, defined more fully in (5.1), 
normalized by the rate for a fully absorbing sphere, as a function of the reflection coefficient 
(1-c~), as calculated in (a) the D 2 and (b) the D 8 approximations,  for various values of/?.  
The symbols denote calculated values; the curves are mere guides to the eye. 
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preserve detailed balance for vapor temperature To and vapor density 
ns(TO); this is the analog of Kirchhoffs law in the theory of radiation.] 

We carried out the program described in Sections 3 and 4 for this 
boundary condition as well. The results for the growth rate dR/di at the (in 
general c~-dependent) working temperature Tw(R; c~), normalized by the 
corresponding quantity at c~ -- 1, are given for several values of/~ and e in 
Figs. 4a and 4b for the D2 and D s approximations. The results in Fig. 4b 
are in full agreement with our expectations; in particular we find inde- 
pendence of c~, except for very low e, at large R. The inadequacy of the D2 
scheme at low /~, already evident in Figs. 1 and 3, manifests itself most 
clearly in the completely unphysical sublinear dependence of dR/d~ on c~ for 
/~=0.1 and /~=1 in Fig. 4a. Perhaps more surprising is the quite 
noticeable discrepancy between D2 and D 8 for small cq even at relatively 
large /~. We shall comment on this point in connection with a similar 
phenomenon in the heat conduction problem in a forthcoming paper. (14~ 

From a practical standpoint, the most important message from Fig. 4b 
is that a noticeable dependence of the growth rate on c~ persists up to 
rather large values of /~. Thus, even experiments in the by now well- 
accessible (see, e.g., ref. 15) region /~ ~_ 10 could yield useful information 
about the parameter c~, poorly known in practice, once the theory is adap- 
ted to the systems (gas mixtures) for which experiments are performed. It 
is also clear that experiments on large droplets are of little value in this 
respect, unless c~ turns out to be very small. 

6. C O N C L U D I N G  R E M A R K S  

The understanding of droplet growth in the Knudsen regime was up 
to now hampered by two problems. (1'2~ The boundary conditions to be 
used for the kinetic equations at the liquid-vapor interface (sticking and 
evaporation coefficients) are poorly known, and there were up to now no 
reliable methods to solve the kinetic equations for given boundary condi- 
tions without arbitrary or uncontrolled approximations. We have shown in 
this paper that the variant of the moment expansion method developed in 
I, and applied there to a rather artificial model, is also capable of treating 
a model that includes most of the relevant physics of the problem. Thus it 
appears feasible to extract information about the as yet unknown boundary 
conditions from an analysis of experiments on droplet growth. As we saw 
in the preceding section, such experiments should be done in the Knudsen 
region, but radii no smaller than about ten mean free paths would 
probably be small enoug h . 

Before our model can be used to analyze existing or proposed 
experiments a number of additional features must be incorporated, notably 
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the dependence of the saturated vapor density ns(T) on the droplet radius 
due to surface tension effects. Also, one should proceed from Maxwell 
molecules to more realistic intermolecular interactions, and include the 
effect of an iner~ carrier gas. We shall not consider such issues here in more 
detail; some remarks are given elsewhere. (11) We will add a few comments, 
however, on some of the other crucial simplifying assumptions made in the 
course of our treatment, and on means to relax some of them. 

The most serious restriction lies in our use of the linearized Boltzmann 
equation. As we saw in Section 4, even for a supersaturation of 100 %, the 
density and temperature variations in the quasistationary regime amount 
to no more than about 10%, so nonlinear effects should not be too impor- 
tant. Still, there is room for some improvement. Outside of the boundary 
layer our solution of the Boltzmann equation becomes of Chapman-  
Enskog type. This limiting solution could be replaced by a Chapman-  
Enskog solution of the full nonlinear Boltzmann equation, with boundary 
conditions provided by an analysis of the kinetic boundary layer for the 
linearized equation, as discussed elsewhere (see refs. 6, 14, and 16, espe- 
cially the last part of Section 3 of the latter). Solutions of the Navier-  
Stokes equations from which such Chapman-Enskog solultions can be 
obtained were constructed recently by Luk'yanchuk et a/. O7) for a gas 
mixture around a heated sphere, with chemical reactions occurring at the 
surface of the sphere. The state around which one linearizes could then also 
be chosen more appropriately; one possibility is to choose the isobaric tem- 
perature Ti of (4.13) and the associated density ns(Ti), instead of the values 
To and no of the vapor at infinity. 

The smallness of nonlinear effects in the quasistationary state can also 
be invoked to justify our slightly inconsistent linearization procedure; we 
linearized the Bottzmann equation, but not its boundary conditions, except 
in (3.2) and in the results presented in Fig. 1. This was done mainly for 
numerical convenience; some checks (8~ showed that a consistent lineariza- 
tion did not give significantly different results. 

An important simplification was obtained by our use of stationary 
solutions to determine the parameters in the evolution equations for/~ and 
if'. As we pointed out, a necessary condition is that dR/dt is small compared 
with the thermal velocity (mfl) -1/2. From (4.6) one sees that this is the case 
once the temperature transients are over. The factor no/nt(To) is equal to 
1/42.7 for our choice of parameters, whereas ~r To) is at most of order 
unity, and usually much smaller: for a fully absorbing sphere ~Cp is equal to 
the parameter O~pp shown in Fig. 1; the spontaneous evaporation included in 
the present model clearly leads to an appreciable reduction in top relative 
to the fully absorbing case. The use of stationary solutions becomes some- 
what more problematic during the fast transient shown in Fig. 2. In actual 
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experiments, however, these transients occur already in the nucleation 
stage, where our model does not yet apply anyhow. 

The adiabatic elimination of T from (4.10a) could also be performed 
somewhat more carefully(~8); one could substitute 

d T  d T ~ ( k )  d k  
~ - =  dR d~ {6.1) 

instead of dropping the second term completely. However, this causes only 
minute corrections in view of the smallness of ~p and the very weak 
dependence of Tw on/~ [cf. (4.12)], except possibly for very small/~, where 
the factor of/~ reduces the effect. 

Finally, we want to stress once more that our treatment makes sense 
only well away from the critical point. This assumption enters in a number 
of places. First, we assumed that the droplet reaches equilibrium almost 
instantaneously on the time scale to = t , .njn s that governs the droplet 
growth. Near the critical point the mean free time in the liquid is 
comparable with that in the gas, and nl/n~ is of order unity; hence the 
transport of heat to the droplet center requires a time much longer than t 0. 
Second, we assumed that the droplet remains spherical, which requires a 
large surface tension, also absent near the critical point. Third, the small 
difference between 27 w and To, essential to the use of linearized equations, 
derives from the steepness of the coexistence curve (4.1 1) at the density no, 
whereas the rapidity of the transients in Fig. 2, which enabled us to 
eliminate if" adiabatically, is ultimately caused by the large value of the heat 
of condensation. Both features disappear near T,. Our justification for 
using stationary solutions of the Boltzmann equation in constructing the 
evolution equation for /~(i) again relied on the fact that n j n ,  is large. 
Finally, the use of the Boltzmann equation itself becomes questionable 
once the vapor ceases to be dilute. Thus, closer to Tc one needs a 
fundamentally different theory, which treats liquid and vapor on a much 
more equal footing. 
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